Viscous materials that break standard laws at low temperatures

1 August 2012 Although scientists do not yet thoroughly understand their behaviour when approaching the glassy state, this new study, which relies on an additional type of dynamic measurements, clearly shows that they do not behave like more simple fluids,…

1 August 2012

Although scientists do not yet thoroughly understand their behaviour when approaching the glassy state, this new study, which relies on an additional type of dynamic measurements, clearly shows that they do not behave like more simple fluids, referred to as “activated” fluids. This is contrary to recent reports. Typically, the dynamics of materials are described using a formula called the Arrhenius law, which is well known for chemical reaction rates. It states that a very simple law regulates how temperature affects characteristics such as viscosity and relaxation times –i.e., delay in returning to equilibrium after the material has been subjected to a perturbation. The authors used a so-called “residuals” analysis to show that Arrhenius type dynamics is not a common behaviour at temperatures between a sub-melting point threshold, called the crossover temperature, which occurs at a dynamic transition point, and the glass transition temperature, where the liquid becomes a glassy solid. Zhen Chen and co-authors came to this conclusion by analysing not only the material’s viscosity but also more precise data on the dielectric relaxation time available within the same temperature range. This gave them a more exact account of relaxation dynamic properties in highly viscous materials. The study revealed the need for greater precision in the viscosity data of glass-former materials to avoid masking its actual behaviour from data treatment and graphical representation.

Phys.org