The science of U.S. energy: A Q&A with Secretary Ernest J. Moniz

When extreme weather such as Hurricane Sandy hits, energy infrastructure is often the first thing to fail. In a world that must adapt to climate change, building resilience into such infrastructure may prove key. That, and a number of other…

When extreme weather such as Hurricane Sandy hits, energy infrastructure is often the first thing to fail. In a world that must adapt to climate change, building resilience into such infrastructure may prove key. That, and a number of other activities, help make up President Obama’s “all of the above” energy strategy—and new Secretary of Energy Ernest Moniz is charged with tackling them all during his term. (Moniz once served as an advisor to Scientific American as well as co-author of a feature article for the magazine, “The Nuclear Option.”)

On December 12 Scientific American sat down with the new Secretary in an overheated conference room tucked in the back of a start-up grid-scale battery maker Urban Electric Power. The wide-ranging discussion touched on everything from the need for grid-scale energy storage to the future of nuclear weapons.

[An edited transcript of the interview follows.]

Why do we need grid-scale energy storage?
There are several reasons. It’s about absorbing intermittent sources [of electricity] like solar and wind. Clearly, there are other things that one can do to help balance those kinds of intermittent supplies, like integrating [natural] gas, et cetera. But obviously storage gives you massive flexibility.

The issue has been the cost. That’s where [Urban Electric Power] comes in. We all know a lot of these starting companies eventually hit a roadblock. But some of them don’t. If they can get below $100 a kilowatt in a manufacturable system, that would be a significant place to be.

As we go more and more to smart grids and grids with intelligence, integrating distributed storage [into our grid infrastructure] will also be important. There are all kinds of issues with power quality, like frequency stability, et cetera. Storage technology has so many possibilities.

But isn’t the home of the future going to have natural gas fuel cells and photovoltaics on the roof? Then maybe we don’t need the grid?
Certainly for a well-developed economy like the U.S., it’s not going to be one or the other. That would be a false choice. I think there will always be a place for some large, baseload [power] plants, et cetera, even as we have, I think, an increased emphasis on distributed generation [from technologies such as solar or fuel cells]. Of course, when you go to other places in the world, then the balance [for the power-generation portfolio] can be quite different. You might start from the distributed side and then, perhaps, integrate into a larger system depending on the economy.

Let me give you one example of where we see a different architecture emerging. Next year, there is really going to be a focus on infrastructure. In the climate context, it’s the question of resilience of energy infrastructure against, well, Sandy, and other things of that type. Although I do want to emphasize that when we are looking at resilience of energy infrastructure it will be broader than just extreme weather events. It will also be cyber [security for the grid against hacking] as well as physical threats. There have been physical attacks on key substations [on the electrical grid], et cetera. There is actually the very issue of interdependence of infrastructures, which is itself a risk to infrastructure. Another Sandy example would be the interplay between electricity and transportation fuels. It wasn’t a shortage of fuel [after Sandy that led to lines for gasoline]; it was a shortage of being able to access and use the fuel. So this resilient infrastructure will be a big deal.