Squeezing transistors really hard generates energy savings

If silicon is squeezed, this affects the freedom of movement of the electrons in this material. This can promote or restrict the flow of electrical current. Compare it to a garden hose. When you stand on it, less water comes…

If silicon is squeezed, this affects the freedom of movement of the electrons in this material. This can promote or restrict the flow of electrical current. Compare it to a garden hose. When you stand on it, less water comes out. But strangely enough, the flow of electrons in silicon actually increases when the material is compressed.

Only pinch when necessary
In modern microchips, every single transistor is continuously exposed to enormous pressures of up to 10,000 atmospheres. This pressure is sealed in during the manufacturing process, by surrounding the transistors with compressive materials. While this boosts the chip’s processing speed, the leakage current also increases. The use of piezoelectric material means that the transistors are only put under pressure when this is necessary. This can generate considerable savings in terms of energy consumption.
Limit smashed
The underlying concept was originally developed by Ray Hueting. In order to turn this into reality, Tom van Hemert had to find a way of linking theories of mechanical deformation with quantum-mechanical formulas describing the electrical behaviour of transistors. The calculations indicate that “garden hose transistors” are much better than conventional transistors at switching from off to on. According to the classical theoretical limit, a charge of at least 60 millivolts is needed to make a transistor conduct ten times more electricity. The piezoelectric transistor uses just 50 millivolts. As a result, either the leakage current can be reduced, or more current can be carried in the on-state. Either way, this will boost the performance of modern microchips, while — importantly — cutting their energy consumption.
The results of this research were recently published in the journal, Transactions on Electron Devices.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is based on materials provided by University of Twente.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Note: If no author is given, the source is cited instead.

Search ScienceDaily
Number of stories in archives: 148,137

 

Interested in ad-free access? If you’d like to read ScienceDaily without ads, let us know!

  more breaking science news

Social Networks
Follow ScienceDaily on Facebook, Twitter, and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

Breaking News
… from NewsDaily.com

more science news
In Other News …
more top news
Science Video News

Rip Current Secrets Revealed
Rip currents flow in very erratic patterns, not in steady courses as previously believed — which may help explain why they can be so dangerous even. …  > full story

Strange Science News
 

Free Subscriptions
… from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:
Email Newsletters
RSS Newsfeeds
Feedback
… we want to hear from you!

Tell us what you think of ScienceDaily — we welcome both positive and negative comments. Have any problems using the site? Questions?
Leave Feedback