Solar paint paves the way for low-cost photovoltaics

Using quantum dots as the basis for solar cells is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight to power. The latest advances in quantum dots photovoltaics have…

Using quantum dots as the basis for solar cells is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight to power. The latest advances in quantum dots photovoltaics have recently resulted in solar cell power conversion efficiencies exceeding 7% (see for instance: “Graded Doping for Enhanced Colloidal Quantum Dot Photovoltaics”). Although these performance levels are promising, all high-performing device results to date have relied on a multiple-layer-by-layer strategy for film fabrication rather than employing a single-layer deposition process.

The attractiveness of using quantum dots for making solar cells lies in several advantages over other approaches: They can be manufactured in an energy-saving room-temperature process; they can be made from abundant, inexpensive materials that do not require extensive purification, as silicon does; and they can be applied to a variety of inexpensive and even flexible substrate materials, such as lightweight plastics.

In new work, reported in the August 12, 2013 online edition of Advanced Materials (“Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink”), a research team from the University of Toronto and King Abdullah University of Science and Technology (KAUST) developed a semiconductor ink with the goal of enabling the coating of large areas of solar cell substrates in a single deposition step and thereby eliminating tens of deposition steps necessary with the previous layer-by-layer method.

“We sought an approach that would achieve highly efficient utilization of CQD materials,” says Professor Ted Sargent from the University of Toronto, who, together with Osman Bakr, an assistant professor in the Solar & Photovoltaics Engineering Research Center at KAUST, led the work. “To achieve this, we made a solar cell ink that can be deposited in a single step which makes it an excellent material for high-throughput commercial fabrication.”

The team’s ‘solar paint’ is composed of semiconductor nanoparticles synthesized in solution – so-called colloidal quantum dots (CQDs). They can be used to harvest electricity from the entire solar spectrum because their energy levels can be tuned by simply changing the size of the particle.

Previously, films made from these nanoparticles were built up in a layer-by-layer fashion where each of the thin CQD film deposition steps is followed by curing and washing steps to densify the film and form the final semiconducting material. These additional steps are required to exchange the long ligands that keep the CQDs stable in solution for short ligands that allow efficient charge transport. However, this means that many steps are required to build a thick enough film to absorb enough sunlight.

“We simplified this process by engineering the CQD surfaces with short organic molecules in the solution phase to enable a stable colloidal solution and reduce the film formation to a single step,” Bakr explains to Nanowerk. “At the same time, the post processing steps are reduced significantly, since the semiconducting material is formed in solution. This means that CQD films can be deposited quickly and at low cost, similar to a paint or ink.”

a) Schematic of the standard layer-by-layer spin-coating process with active materials usage yield and required total material indicated. b) Schematic of the single-step film process with active materials usage yield and required total material indicated. (Reprinted with permission from Wiley-VCH Verlag)

Besides the reduction in processing steps, the new process is also much more efficient in terms of materials usage. While the layer-by-layer, solid-state treatment approach provides less than 0.1% yield in its application of CQD materials from their solution phase onto the substrate, the new approach achieves almost 100% use of available CQDs.

“This means that for the same amount of CQD material, we could make a thousand-fold larger area of solar cells compared with conventional methods,” Bakr points out.

“Our technology paves the way for low-cost photovoltaics that can be fabricated on flexible substrates using roll-to-roll manufacturing, similar to a printing press,” adds Lisa Rollny, a PhD candidate in Sarget’s group and a co-author of the paper. “Our ink is also useful in biological applications, e.g. in biosensors and tracing agents with an infrared response.”

“In previous work, we found new routes of passivating the CQD surface using a combination of organic and inorganic compounds in a solid state approach with large improvements in efficiency,” says Rollny. “We intend to integrate this knowledge with our solar CQD ink to further improve the performance of this material, especially in terms of how much solar energy is converted into usable electrical energy.”

Although the team have developed an effective method for producing a CQD film in a single step, the electronic properties of the resulting films are not optimized yet. This is due to the very small imperfections on the CQD surface that reduce the usable electricity output of a solar cell. Through careful engineering of CQD surfaces in solution, the researchers plan to eliminate these unwanted surface sites in order to make higher quality, higher efficiency CQD solar cells using their single step process.

By Michael Berger. Copyright © Nanowerk

Nanotechnology Spotlights

Posted: Aug 26, 2013
Nanotechnology research produces foldable graphene electronics on paper
Posted: Aug 22, 2013
Inkjet printing of graphene for flexible electronics
Posted: Aug 20, 2013
Vault particles as a nanotechnology platform
Posted: Aug 19, 2013
Biopolymer templated glass with a twist
Posted: Aug 15, 2013
Gaps in U.S. nanotechnology regulatory oversight
Posted: Aug 13, 2013
How squid and octopus might point the way to nanotechnology-based stealth coatings
Posted: Aug 12, 2013
Will it be possible someday to build a ‘Fab-on-a-Chip’?
Posted: Aug 08, 2013
Novel CNT-copper nanocomposite delivers a 100-fold increase in current density
Posted: Aug 06, 2013
‘Valleytronics’ – an alternative electronics concept in diamond
Posted: Aug 05, 2013
A sustainable nanotechnology design for micro-sized microbial fuel cells
Posted: Aug 01, 2013
Nano-storage wires
Posted: Jul 31, 2013
Release of silver from nanotechnology-based products for children
Posted: Jul 30, 2013
Highly effective tumor targeting platform with nanoghosts
Posted: Jul 26, 2013
Microfluidics device detects drugs in saliva fast
Posted: Jul 25, 2013
Optical detection of epigenetic marks
Posted: Jul 24, 2013
Biological responses to nanoparticles are temperature-dependant
Posted: Jul 23, 2013
Visualization and manipulation of carbon nanotubes under an optical microscope
Posted: Jul 22, 2013
Probing single-molecule magnets with carbon nanotube NEMS
Posted: Jul 19, 2013
Silicon chips inserted into living cells can feel the pressure (w/video)
Posted: Jul 18, 2013
Carbon nanotubes lead to strikingly large contrasts in the thermal conductivity of phase change materials
Posted: Jul 17, 2013
Will future battery parts be grown on a rice field?
Posted: Jul 16, 2013
Researchers grow half-meter long carbon nanotubes
Posted: Jul 15, 2013
Bioinspired nanotechnology colorimetric assays – turning trash into treasure
Posted: Jul 12, 2013
Read more Spotlights

Follow @Nanowerk

Privacy statement | Terms of use | Contact us | About us | Home | Sitemap | Advertise with us | RSS
The contents of this site are copyright ©2013 Nanowerk. All Rights Reserved