Home testing devices could monitor epilepsy, drug levels, reduce clinical visits

Medications remain the mainstay of epilepsy treatment, and to date there are no FDA-approved devices that provide an accurate means of detection for generalized tonic-clonic seizures (GTCS), or convulsions, during activities of daily living. Two new studies presented at the…

Medications remain the mainstay of epilepsy treatment, and to date there are no FDA-approved devices that provide an accurate means of detection for generalized tonic-clonic seizures (GTCS), or convulsions, during activities of daily living. Two new studies presented at the American Epilepsy Society’s 67th Annual Meeting in Washington D.C. provide data that warrants the development of non-invasive devices with the capability to signal the onset of an epileptic seizure and could be crucial to optimal patient dosing.

Share This:


Interim analysis that aims to validate a seizure detection software algorithm was presented to support the development of a non-invasive detection device with the ability to measure electromyography (EMG) signals. Patients in this study were asked to wear an arm-device that detected all GTCS within 30 seconds of arm motor action. Twenty-nine patients with a history of seizures were enrolled in the study while in the hospital Epilepsy Monitoring Unit for routine EEG monitoring.
“Our study demonstrates the feasibility to detect generalized tonic-clonic seizures with an arm device analyzing muscle activity during daily living. We were able to capture the GTCS through analysis of EMG signals and confirmed these seizures using video-EEG (VEEG) recordings. The software algorithm was optimized using baseline measurements of maximum voluntary muscle contraction (MVC). In every instance that a GTCS was recorded by vEEG, it was also captured by EMG,” said Akos Szabo, MD, the lead researcher of the study.
The results determined that the seizure detection algorithm appeared superior to the other devices currently under investigation or currently commercialized. No false alarms were triggered during activities of normal living.
In a related study conducted by an interdisciplinary team that includes clinician and research experts in epilepsy from the University of Texas Houston, and bioengineers from Rice University, programmable Bio-Nano-Chips (p-BNCs) are presented here in their first application as a non-invasive, repeatable and adaptable alternative to serial serum antiepileptic drug measurements. This study provides a report on progress towards the development of a realistic saliva-based BNC system demonstrating proof of concept of simultaneous detection and quantitation of two commonly used antiepileptic drugs — phenytoin (PHT) and phenobarbital (PHB). Advantages offered by this technology include the potential for the patients or their caregiver to monitor the levels of antiepileptic drugs in their system, always in a non-invasive, cost effective manner outside the doctor’s office.
“These bio-nano-chips, or “labs on a chip” as we like to call them, are a new generation of compact, programmable chemical processors that will satisfy the urgent need for non-invasive, adaptable and cost effective alternatives to blood test,” said Giridhar P. Kalamangalam, MD.
The BNC calibration signals are robust and provide ultra-low reliable limits of detection, and compare favorably to the in-lab reference or gold standards. Further work aims to produce a practical point of care diagnostic, eventually a hand-held device hosting a disposable, credit card-sized lab card that will empower patients to monitor drug intake on their own.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is based on materials provided by American Epilepsy Society (AES).
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Note: If no author is given, the source is cited instead.

Search ScienceDaily
Number of stories in archives: 148,500

 

Interested in ad-free access? If you’d like to read ScienceDaily without ads, let us know!

  more breaking science news

Social Networks
Follow ScienceDaily on Facebook, Twitter, and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

Breaking News
… from NewsDaily.com

more science news
In Other News …
more top news
Science Video News

Pinpointing Problems In The Brain
Doctors are now using a new kind of brain scan called magnetoencephalography (MEG), which measures brain activity in real time. In some cases, MEG. …  > full story

Strange Science News
 

Free Subscriptions
… from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:
Email Newsletters
RSS Newsfeeds
Feedback
… we want to hear from you!

Tell us what you think of ScienceDaily — we welcome both positive and negative comments. Have any problems using the site? Questions?
Leave Feedback