Br/N-based dopants open up the band-gap in graphene nanoplatelets for the design of FETs

Reaserchers at the Ulsan National Institute of Science and Technology (UNIST in Korea) unveiled a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of a graphene-based field-effect transistor (FET). Led by Prof. Jong-Beom…

Reaserchers at the Ulsan National Institute of Science and Technology (UNIST in Korea) unveiled a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of a graphene-based field-effect transistor (FET).

Led by Prof. Jong-Beom Baek, the research team uses a simple solvothermal reaction of BBr3/CCl4/N2 in the presence of potassium to mass produce boron/nitrogen co-doped graphene nanoplatelets (BCN-graphene).
Since graphene was experimentally discovered in 2004, various methods of making graphene-based field effect transistors (FETs) have been exploited, including doping graphene tailoring graphene-like a nanoribbon, and using boron nitride as a support. Among the methods of controlling the band-gap of graphene, doping methods show the most promise in terms of industrial scale feasibility.
Although world leading researchers have tried to add boron into graphitic framework to open its band-gap for semiconductor applications, there has not been any notable success yet. Since the atomic size of boron (85 pm) is larger than that of carbon (77 pm), it is difficult to accommodate boron into the graphitic network structure.
The new synthetic protocol has revealed that boron/nitrogen co-doping is only feasible when carbon tetrachloride (CCl4) is treated with boron tribromide (BBr3) and nitrogen (N2) gas.
In order to help boron-doping into graphene structure, the research team used nitrogen (70 pm), which is a bit smaller than carbon and boron. The idea was very simple, but the result was surprising. Pairing two nitrogen atoms and two boron atoms can compensate for the atomic size mismatch. Thus, boron and nitrogen pairs can be easily introduced into the graphitic network. The resultant BCN-graphene generates a band-gap for FETs.

A schematic representation for the formation of BCN-graphene via solvothermal reaction between carbon tetrachloride (CCl4) boron tribromide (BBr3) and nitrogen (N2) in the presence of potassium (K).

Visit the Ulsan National Institute of Science and Technology at www.unist.ac.kr

All news

Follow us

Interview

“Future automotive applications need incredibly more computing power”
These days, the Autosar (Automotive Open System Architecture) development partnership celebrates its tenth anniversary. Launched with the goal to reduce the complexity of the heterogeneous software landscape …

Filter Wizard
Check out the Filter Wizard Series of articles by Filter Guru Kendall Castor-Perry which provide invaluable practical Analog Design guidelines.

Linear video channel

READER OFFER

Read more

Internet of Things (IoT) manufacturer Ciseco has launched the Raspberry Pi ‘Wireless Inventors Kit’ (RasWIK), featuring 88 pieces to provide everything a Pi owner needs to follow a series of step-by-step projects or to create their own wireless devices, without the need for configuration or even writing code.
RasWIK has been designed to be highly accessible, demystifying the dark art of wireless and enabling anyone with basic computing skills to begin building wireless devices with a Raspberry Pi. You can create anything from a simple traffic light, to a battery monitor, or even a temperature gauge that sends data to the Xively IoT cloud so billions can access the data.
This month, Ciseco is giving away twelve Raspberry Pi Wireless Inventors kits, worth £49.99 each for EETimes Europe’s readers to win. And the winners are…
In our previous reader offer, Farsens was giving away five kits for EEtimes Europe readers to evaluate its FenixVortex, Kineo and X1 wireless, battery free sensor tags.
Lucky winners include Mr A. Neil from the UK, Mr. E. Delvaux from Belgium, Mr Lengal from the Czech Republic, Mr H. Bijlsma from the Netherlands, and Mr G. Pfaff from Germany. All should be receiving their packages soon. Lets wish them some interesting findings with their projects.
Read more

Design centers
Automotive

Infotainment
Making HDTV in the car reliable and secure
December 15, 2011 | Texas instruments | 222901974
Unique Ser/Des technology supports encrypted video and audio content with full duplex bi-directional control channel over a single wire interface.